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What is Machine Unlearning?
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What is Machine Unlearning?

Dataset w/
regulation
Training
New Model —
Machine unlearning (MU): Erase influence of specific data/classes in @
model performance, e.g., to comply with data privacy regulations
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New Opportunities Provided by MU

Defense in Trojan Al: Mitigating harmful influence of poisoned training data points
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New Opportunities Provided by MU

Improved transfer learning: Improving source model by "pruning” source data
points that have harmful influence in downstream tasks

485 ImageNet->SUN397

Example: By unlearning the “harmful” S480
source classes (e.g., ImageNet) [Jain & 47,5
Madry, 2022], the pretrained model (e.g., ‘ 5470
ResNet18) can achieve much better S 4.5 1A I U N O O N
performance in downstream tasks (e.g., PP
SUN397) %0 | Unlearning
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What is Machine Unlearning?
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MU is a generic framework for "updating” models to
comply with "data manipulation” requests, which
draws the connection between data influence and
model influence

Is MU equal to finetuning? No! Finetuning is inefficient to
unlearn data influence on model
weights
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Why Are The Challenges of MU?

> The optimal MU sirategy: Retrain the
model from scratch over retaining
dataset (after removing data points
to be unlearned)

Random initialization Retrained model

» Downside: Lacks training efficiency, particularly for large-scale deep models

Training Challenge: How to develop “fast” training methods

- for MU without losing unlearning effectiveness (“optimality”)?
R —
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Why Are The Challenges of MU?

- Evaluation challenge: Mulfiple unlearning performance metrics

Computation

efficiency
Unlearning efficacy
Preserved Whether or not truly remove impact
generalization of unlearned data points?
E.g.. measured by membership
Testing accuracy of inference attack (MIA), accuracy
“unlearned” model on unlearned data points
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Existing Methods and Limitation

« Refraining from scratch (exact unlearning): Most effective but least efficient
« Approximate unlearning: More efficient but lacks optimality guarantees

* Influence function-based approaches (require second-order derivatives):
» Influence unlearning (IU) [Liang, et ail., 2017]
» Fisher forgetting (FF) [Soatto, et al., 2020]

» Heuvristics-based approaches (computationally lightest):
» Fine-tuning (FT) on remaining training set
« Gradient ascent (GA) [Thudi, et al., 2022]

Limitation: There exists a significant performance gap between
exact unlearning and approximate unlearning
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Existing Methods and Limitation

Performance gap between exact unlearning and approximate unlearning
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Our goal: Develops a theoretically-grounded and broadly-

applicable method to close the performance gap @
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Improving MU: A Model Pruning-based Perspective

* What is model pruning?

Model pruning: Finds a sparse sub-network without
losing generalization ability

—— —— e e
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Improving MU: A Model Pruning-based Perspective

* Pruning yields a sparse model without generalization loss
95.0

Testing Accuracy (%)
h
(9)]

=== Dense Model
—— OmP 94.24
94.05 20 40 60 80 95
Sparsity (%)

Testing accuracy of pruned ResNet-18 vs. pruning ratio on
CIFAR-10 using One-shot Magnitude Pruning (OMP)
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Pruning Helps Unlearning

* Pruning intfroduces “sparsity”, thus needs “less” model weights to be modified for MU

Intuition: Reduces unlearning dimension and unlearning error, i.e., the gap
between approximate unlearning and exact unlearning (retrain from scratch)

* Provable guarantee:

Theorem: Given SGD-based training and model pruning mask m, the unlearning
error, e(m), characterized by weight distance between an approximate unlearner
and the exact unlearner yields

e(m) =0(lm © (8; — 6y)|>)
® is entry-wise product, 8, is model trained after t SGD iterations

« Sparsity: Helps reduce unlearning error, possible tfradeoff with generalization
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How to Integrate Pruning with Unlearning?

* Which weight pruning method should be used for MU?

» (C1) Light computation
> (C2) No generalization drop

» (C3) Pruning has least dependence on
forgetting data points (to be unlearned)

* Pruning methods:
« SOTA iterative magnitude pruning (IMP) [rrankie & carbin, 2018] Violates (C1) & (C3)
« Ofther options?e
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How to Integrate Pruning with Unlearning?

» Suggested pruning methods:

 Pruning at random initialization (e.g., SynFlow) & . Réktrain
&) Moderate computation cost E 80 A%5%

& A bit generalization drop E >
@ Least dependence on forgetting dataset g% \
2 40 %

« (Best) One-shot magnitude pruning (OMP) = -l SynFlow Dense §/5%
@» Lightest in computation 2 20 —A— OMP ® TS
() Competitive generalization performance = -V P B
< Least dependence on forgetting dataset 0 930 935 940 945 950

Testing Accuracy (%)
ﬁ Tanaka, Hidenori, et al. "Pruning neural networks without any data by iteratively conserving synaptic flow.” NeurlPS, 2020 @
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How to Integrate Pruning with Unlearning?

« (Strategy 1) Prune first, then unlearn: Find sparse model first, then applies
existing approximate unlearning methods to the sparse model
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How to Integrate Pruning with Unlearning?

- (Strategy 2) Sparsity-regularized unlearning: Promoting weight sparsity as a
regularization for unlearning

0, = (’Jlrgming Ly (6; Dr),-l' va| AP

v —

MU objective function on £, sparse
remaining dataset D, regularization

 How to select regularization parameter?

In practice, linear decaying schedular for y works the best

Prioritize promoting sparsity at the early stages, then gradually shift the
focus towards enhancing model performance @
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Sparsity-as-A-Regularization Is Effective for MU
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(a) Class-wise forgetting (b) Random data forgetting
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Sparsity-as-A-Regularization Is
Effective for MU
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Application: MU for Trojan Model Cleanse

Modified Dataset Classification Inference
 Backdoor attack setup: ' @@

: Model Training .
> BadNet Gu, etal., 2017: . B . i /%) ﬂ:>
6 4 Y 4 NH{\HH@ :> ﬂ = gtLbI

Cl Modified Samples
Sampl w/ Target Label

« Evaluation Metrics: ﬂ

Machine Inference

Unle/arnmg n “_ -
sl | P ﬂ Target Label
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» Poison ration: 10%

(Backdoored DNN

» Backdoor attack success
rate (ASR)

» Standard accuracy (SA)

« Goal of MU: Removes backdoor
data influence in backdoor model
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Application: MU for Trojan Model Cleanse
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models vs. sparsity ratios unlearned models vs. sparsity
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Summary

 Whatis machine unlearning (MU)?¢

« MU is non-trivial: Finetuning is ineffective to erase data influence
from a trained model, but finetuning + sparsity can!

« Model sparsity can help reduce machine unlearning error
« Applications of MU is broad, beyond data privacy

Paper: Jia, Liu, Ram, Liu et al., Model sparsification can simplify machine unlearning, arXiv, 2023
Code: hitps://github.com/OPTML-Group/Unlearn-Sparse
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https://github.com/OPTML-Group/Unlearn-Sparse

Discussion CVPR’23 tutorial on RED

« A future data-model attribution & learning fram

DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY  ABOUTUS / OURR

Model debuggingiata
Pre_‘l‘rgined CITTI’IbUTIOh

v
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Remove bad data influence

> Defense Advanced Research

Reverse Engineering of Deceptions (RED)

(Machine unlearning)

Projects Agency > Our Research > Reverse Engineering of Decep)

......

« Trustworthy Al applications: Removing biased data for fairness, protecting

copyrights of image generation, etc
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Call for Participation: 2"d AdvML-Frontiers@ICML'23

AdVM L-FrO ntlerS'23 Home About Speakers CallForPapers Contacts AdvML-Frontiers'22
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