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* What is Model Reprogramming?

* How to use Model Reprogramming for Improving Task Performance
under Differential Privacy Constraints?

* Why Model Reprogramming Works? [Time Permits]



What is Model Reprogramming?
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Model Reprogramming Framework

Model Reprogramming

Pre-trained Output
Model (frozen) Mapping Layer

Transformation =

Source Domain Target Domain
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Parameter Efficiency and Reusability!
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Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning
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Unleashing the Power
of Pre-trained Models

Large pre-trained models are available “If I have seen further, \

in some data rich domains

* text, image, speech, ... itis by Standing on the
shoulders of Giants.”

Model reprogramming: leveraging pre-
trained models in well-studied domains
to solve tasks in resource-limited —Isaac Newton
domains
* Limited Data: medical imaging,
molecular learning, time series ...
Limited Model: no high-quality
pretrained models in the target
domains
Limited Resource: train from
scratch is too costly
Training constraints: privacy
budget, training time, etc

* New altervative: Resource-efficient
transfer learning (or parameter-efficient
fine-tuning) without model finetuning




Foundation Models: The one-for-all solution for Al
High-Capacity Models Pre-Trained on Large-Scale Datasets

Large-scale High-capacity Finetuning on
data for pre- neural downstream
training networks task and data

memory size
~ 1000 billon 175 billion training >350GB

tokens parameters estimated cost $12
million to train

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv
https://venturebeat.com/2020/06/01/ai-machine-learning-openai-gpt-3-size-isnt-everything



How Much Does GPT-4 Cost?

OpenAl’s CEO Says the Age of Giant Al Models Is Already Over

Sam Altman says the research strategy that birthed ChatGPT is played out and future strides in artificial intelligence will require new ideas.

PHOTOGRAPH: JASON REDMOND/GETTY IMAGES

GPT-4, the latest of those
projects, was likely trained
using trillions of words of text
and many thousands of
powerful computer chips. The
process cost over $100 million.

At the MIT event, Altman was
asked if training GPT-4 cost
$100 million; he replied, “It’s
more than that.”



How to Use Foundation Models for
Machine Learning in Resource-
Limited Settings?

Standard Setting
— Pre-training + Fine-tuning
— Sufficient pre-training data and compute power

— Finetuning to in-domain downstream tasks

Resource-Limited Setting
— Reprogramming + No fine-tuning
— New domain with limited data / compute power

— No pre-trained models in the same domain




Standard Transfer Learning via Fine-Tuning

* Model Reprogramming

e Pre-trained * Cross-domain learning
Coneral It Model A Reprogram a pre-trained model from domain A to solve

resource-limited tasks in domain B

Transfer pre-trained » Data/Compute efficiency
parameters to new task Does not require finetuning the pre-trained model weights
Specific
Task

* Achieve state-of-the-art performances
s ‘ﬂ—— — l— I—— 80%1

Freeze Freeze Fine-tune Fine-tune




Background: “Adversaria

Gamaleldin F. Elsayed,
lan Goodfellow, and
Jascha Sohl-Dickstein,
Adversarial
Reprogramming of
Neural Networks. ICLR
2019

“We introduce attacks
that instead reprogram
the target model to
perform a task chosen
by the attacker—
without the attacker
needing to specify or
compute the desired
output for each test-
time input.”

’) .
” Reprogramming
Model Pretrained on ImageNet Untrained
Counting MNIST CIFAR-10 Shuffled MNIST  MNIST
train test train test test test
Incep. V3 0.9993 0.9781 |0.9753) 0.7311 J0.6911} 0.9709 0.4539
Incep. V4 0.9999 0.9638 |0.9646] 0.6948 J0.6683) 0.9715 0.1861
Incep. Res. V2 0.9994 0.9773 |0.9744) 0.6985 0.6719) 0.9683 0.1135
Res. V2 152 0.9763 0.9478 |0.9534] 0.6410 J0.6210f 0.9691 0.1032
Res. V2 101 0.9843 0.9650 |0.9664] 0.6435 J0.6301}) 0.9678 0.1756
Res. V2 50 0.9966 0.9506 | 0.9496) 0.6 0.5858) 0.9717 0.9325
Incep. V3 adv. 0.9761 |0.9752 o




What can we do with Foundation
models + Reprogramming?

BAR: Black-box Adversarial Reprogramming
https://arxiv.org/abs/2007.08714 (ICML 2020)




BAR: Transfer Learning without Knowing

* Reprogram powerful but
black-box models for

transfer learning (w/o £y aws
fine-tuning) — extension o : _Genera_l Task
to black-box APIs oo - (Animal, Vehicle..., etc.)

* Appealing for cross-
domain and data-limited
transfer learning

£y Medical Imaging
ooe & Task

[ o




How (Black-box) Reprogramming Works

Pre-trained model

Access-imited
Original Domain black-box ML model Tench ~ .
$ trainable

Goldfish,
- ImageNet data Farsricehoad

- iR Tiger shark,
111l | Cock, > target data

NS Hen

111 . . .

Universal trainable
=, perturbation

Access-limited
black-box ML model

Target Domain
ASD DR

I
, Melanoma

I:h s |

- Hen '} No fine-tuning on pre-
: trained models!

Adversarial Program 14 : |
( parametrized by W) J‘
Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )



Problem Formulation

* Given a (black-box) pretrained model:
F : X - RX,
where X € [—1,1]% and F(x) = [F;(x), F,(x), ..., Fx(x)] € RX
* Given the set of data from the target domain by:

(TY-,, whereT; € [-1,1]% and d’' < d

e OQutput: Optimal input perturbation with
trainable parameter (bias) W ™.

trainable

- ‘ o -
Universal

— trainable
perturbation W




Input Transformation Function

* The transformed data sample for model reprogramming is defined as:

Xi ={T:}er0 padaing + P» and P = tanh(WOM)

e

Universal trainable Tra|nab|e parameters- Binary mask indicating
perturbation (aka Trigger!) W € R4 where to add perturbation

Target Domain a \\l Access-limited
I i black-box ML model

i T »:\::"_fv 3 a0 ! 1
i Vo A o e !
ASD | DR , Melanoma | ! |
I 1 3
—_— | i i ' s
QI | : | |
= | : : — —
. H 1
SF A | Ii ; b ! 1 Hen
! (el gl| ; |
Adversarial Program \‘ 1
( parametrized by W) J‘
Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )



Multi-label Mapping (Random)

e F(-): pretrained source model

* We use the notation h; (-) to denote m to 1 mapping function. For example,
FTench (X) + FGoldenfish (X) + FHammerhead (X)

hasp (F(X)) =

3
* We find that multiple-source-labels to one target-label mapping better than one-
to-one label mapping.
ar % pesosimies | Multiple label mapping a

black-box ML model i

Tench,
Goldfish, A SDJ

Hammerhead

| P -
» ) ‘.
LY N N
~Q- 5 -
" ". "»‘,._"< s-:

1
: Tiger shark, i
i Cock, =non-ASD '
! Hen i
i :

Adversarial Program \‘ ‘\ ’ | -
( parametrized by W ) J‘ -----------------------
Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )



Multi-label Mapping (Frequency)

* We obtain the source-label prediction distribution of the target-
domain data before reprogramming in each task.

_IETench (X) + FGoldenfish (X) + FHammerhead (X)l

hasp(F(X)) =

We assign the most frequent m
source-labels to one target label.

-

,I
Access-limited { Multiple label mapping
black-box ML model | i
i ¥ . i Tench, ‘ i
Wy ! | | Goldfish, AsD| | i
: ‘ i Hammerhead i
g : Tiger shark, |
i ’ ] i Cock, =non-ASD v
W, (R0 ST \ i Hen !
v.", ";‘v' u' 1 O :
® 1
\ %
Adversarial Program \‘ K | ®
( parametrized by W) J‘ ------------
Update W Zeroth order optimization

( estimate gradient VLoss(W) using model outputs )



* We aim to maximize the probability of p: = P(hj(ytarget)lxtarget)

* We use focal loss empirically as it can further improve the
performance of AR/BAR over cross entropy. Leocqi(pe) = —(1 —p)¥log(pe)

* Optimize for the input transformation parameter W, (t: iteration)
* 70O optimization for learning W* in BAR : Wy, = W, — a; - VL(W,)

Training Loss Function

Target Domain Access-limited Multiple label mapping
ASD i DR , Melanoma -

Tench,
Goldfish, ASD

- o 5
YN " 4
LN A\ N I
b : Hammerhead
s , Tiger shark,
u i t Cock, =non-ASD
8 O Hen
."r'l iy ;'.|‘-' \ e
:' Adversarial Program \‘ . | !
; i
: 1

( parametrized by W) )‘
Update W Zeroth order optimization
( estimate gradient VLoss(W) using model outputs )

___________________________________________________________________________________________________________________



Generic Model Reprogramming Algorithm

~

Output
Mapping Layer

Model Reprogramming

Input

Transformation = —>
Layer

Source Domain Target Domain

(( Sei )) Speech

\
Language $ Molecule

-|I|||-|- Time series

Bio-medical

Vision

@ measureny

1.

n

Initialization: Load pre-trained source model fs(-) and

. Input transformation:

target domain training set {;z?gﬁ):-yﬁﬁ)}'i'?-'

tialize € and w

i*_,; randomly ini-

Obtain transformed input data

7 = Input-Transform(z|6), where 6 is the set of train-
able parameters for input transformation

. Output mapping: Obtain the prediction on the target task

via g7 = Output-Mapping(fs(Z7)|w), where w is the
set of trainable parameters for output mapping?

. Model training: Optimize # and w by evaluating a task-

specific loss Loss(y7, y7 |6, w) on {r%i) ,_ -y%f)}f;?‘:l

. Outcome: Reprogrammed model from fgs(-) with opti-

mized trainable parameters ¢* and w* such that yr =

Output-Mapping( fs(Input-Transform(z4(6*))|w*)



Autism Spectrum Disorder (ASD)
Classification

* Autism Brain Imaging

Data Exchange (ABIDE) Model Accuracy 1. Data efficiency
database Resnet 50 (AR) 73 999 Reprograming is better than transfer learning or
503 individuals suffering Resnet 50 (BAR) 76-%%% train from scratch
from ASD and 531 non- S T 3 50-‘_9_6‘7( 2. Effectiveness
ASD samples Transfer Learning (finetuned) 57.88‘7( Reprogramming outperforms SOTA
. ' : = 3. Practicality
DEEliz sample. . Incept.V3 (AR) 12.30% BAR is comparable to (white-box) AR
200x200 brain-regional Incept.V3 (BAR) 70.10%
correlation graph of Train from scratch 49 .80%
fMRI measurements Transfer Learning (finetuned) 50.10%
- GeuEe FauEEET SOTA 1. (Heinsfeld et al., 2018) 65.40%
model SOTA 2. (Eslami et al., 2019) 69.40%

ImageNet pre-trained
models. AR/BAR=white-
box/black-box
reprogramming

Eslami et al. Asd-diagnet: A hybrid learning approach for detection of autism spectrum disorder using fmri data. Frontiers in Neuroinformatics, 13, Nov 2019.



Reprogramming Microsoft Custom Vision API

This APT allows user uploading labeled datasets and training
an ML model for prediction. The model is unknown to end
user.

We use this API and train a traffic sign image recognition
model (43 classes) using a traffic sign classification dataset
(GTSRB).

Orig. Task to New Task q  #of query Accuracy Cost
Traffic sign classification 1  1.86k 48.15% $3.72
to 5 5.8k 62.34% $11.16
ASD 10 10.23k 67.80% $20.46




Model Reprogramming Meets
Visual Prompting

Model reprogramming on in-domain computer vision pretrained models for in-
domain downstream tasks = visual prompting



What is Visual Prompting?

Exploring Visual Prompts
for Adapting Large-Scale Models

Accuracy (%)

Hyojin Bahng
MIT CSAIL
bahng@mit.edu

Ali Jahanian*
MIT CSAIL
jahanian@mit.edu

Swami Sankaranarayanan*
MIT CSAIL
swamiviv@mit.edu

Phillip Isola
MIT CSAIL
phillipi@mit.edu
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(b) Prompting (adversarial reprogramming) with vision models

Visual Prompt
Ao AN FOL A S R
[ DALty :‘a,r‘.'

dog Text Prompt
cat [__, “This is a photo of a [object].” | —»
bird

Image
Encoder

Text
Encoder

Image

Encoder

“This is a photo of a dog.”

—_—

T

L lgenln 1| - |1y

T T, 2 T

Hard-coded Mapping
ImageNet Index 0 — “Dog”
ImageNet Index 1 — “Cat”

ImageNet Index 9 — “Bird”



iterative Label Mapping (ILM)
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) ( DTD ) ( OxfordPets ] ( Flowers102

Food101

.
-

P

Source data: ImageNet-1K

I
Target data ] : E

FLM D @

TigerShark

e

* CLIP prompting via ILM

MalteseDo

-

Methods VP+TP Ours (VP+TP+LM)
Acc(%) | Acc(%) Examples of context prompt template — target label
Flowers102 70.0 83.7 a close-up photo of a {} — buttercup
DTD 56.8 63.9 graffiti of a {} — blotchy
UCF101 66.0 70.6 a {} in a video game — baseball pitch
Food101 78.9 79.1 a photo of the dirty {} — crab cake
SVHN 89.9 91.2 aphotoofa{} -7
EuroSAT 96.4 96.9 a pixelated photo of a {} — river
StanfordCars 57.2 57.6 the toy {} — 2011 audi s6 sedan
SUN397 60.5 61.2 a photo of a large {} — archive
CIFARI10 93.9 94.4 a pixelated photo of a {} — ship
ImageNet-R 67.5 68.6 a rendition of a {} — gold fish
ImageNet-Sketch | 38.5 39.7 a sketch of a {} — eagle

(

Accuracy (%)
N B W (9]
(@) o0 o [\

B
I

=~
(V)

20%  40%

60%  80%

Downstream Data Fraction

100%

e Data scalability on
GTSRB (traffic sign)



Model Reprogramming for
Differentially Private Fine-tuning




Differentially Private Fine-tuning

* Given a pretrained source model trained on non-private data

* Fine-tune the source model on private downstream data with differential privacy
(DP) for maximal utility

Model

Reprogramming XTarget

A randomized algorithm A4 is said to be (¢,8) — DP if
it guarantees that for any two training datasets D
and D’ that differ by the inclusion or exclusion of a
single training example, and for any set S in the
output space,

Prob(A(D) € S) < exp(e) - Prob(A(D') € S) + 6

Full Finetune Y%
Target

Train From

Scratch XTa rget

Source Model
Partial Finetune Xy
arge

(Pretrained)

[ Trainable Layers
Bl Non Trainable Layers



Centralized and Federated Model Reprogramming

—> —_ Source Model —_
X X.=Zero Pad (X;) + tanh (M @ 6) X (eg: ResNet-50) y
Target Source Source

Input

Y,=softmax(f(Y;;W))  |mmces
YTa rget

Output

v
Source Task
eg: ImageNet

(a) Centralized model reprogramming. T/S denotes the target/source domains.

;- -l
*7(1) Y4(1)

Client 1

x{2) Y+(2)
UZ/

w,

w={s,W}
Server

> > > > @
%:(3) . - Y+(3) Client

Client 3

(b) Federated learning with model reprogramming (Reprogrammable-FL)

Algorithm 1 Federated Model Reprogramming
(Reprogrammable-FL) — Client Side

Input: X', y* = {a% ;, v ;172

I: ClientUpdate’(w,: C., o, L, B, fs)

2: wg —w

3: fort € {0,..., L—1} do

4: B < uniform sampling w/o replacement

5: Update input transformation layer O}, «— O} — - & -

S her Clip(Ver f(eh: (%), ¥3))) + N (0, 02C2D))]
6:  Update output transformation layer W}, ; < W} — -
L1 s Clip (Vi (el (x5, 3))) + N (0, 02C21))]
powipr + (O W)
8: end for
9: return w!

Algorithm 2 Federated Model Reprogramming
(Reprogrammable-FL) — Server Side

Input: wy = (O, Wy) initialised randomly, o, T', L, B, C, o,

N, fs
Output: wr = (O, Wr)
I: fort € {0,.... 7 — 1} do

2 for all i € m in parallel do
3: wi,, = ClientUpdate’(w;.C.o. L. B, fs)

4:  end for

50 Update wyq = Y o, i,y

6:  Server calculates expended privacy budget £ using mo-
ments accountant for fixed o

7. end for

Gradient

clipping +

Gaussian
noise for DP
(on trainable
parameters)

Federated
Averaging +
Budget
Tracking



Test Accuracy (%)

Improved Accuracy-Privacy Tradeoff via MR

CIFAR10-Centralized & = 1e-05

o
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== Full-Finetune
Train_Scratch
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e U4 TS
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Test Accuracy (%)
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Visual Prompting for DP Fine-tuning

Prom-PATE: Visual Prompting + PATE (Private Aggregation of Teacher Ensembles)

Accessible By Adversary

Data 1 ~———————» Re-Teacher 1 \ .
Aggregate . Student
Data2 ., ReTeacher2 . Teachers . Model Deployment
Sensitive .
Data Data 3 ——/)» Re-Teacher 3 . With Non-Private
‘ Pre-trained Classifier
Incomplete Predicted
Public Data Label
Data n — ) Re-Teachern
— Training Prediction ...............’ Data Flow .
Re-Teacher
R Source o
A Xy Model ety ST
(Pretrained)
Trainable Fixed Trainable

Not Accessible By Adversary

Semi-supervised
Setup

PATE: (1) Train
separate teacher
models on disjoint
sensitive datasets;
(2) Train student
model using
predicted labels on
public data from
the ensemble

Reprogrammed
Teacher Model



Improved Accuracy-Privacy Tradeoff via Prom-PATE

€ Accuracy on CIFAR-10 € Accuracy £ Std(%)
Arif et al. [2] 1.04 87.55% ResNet5(0 1.081 95.27 £ 0.80 CIFAR-10 with
Luoetal. [24] | ' gfgjg ResNet152 | 1.009 05.40 + 0.40 different pretrained
Trameretal 1331 | 2 9 7%, WideResNet | 1.068 94.37 £ 0.25 ImageNet models
Yu et al. [39] I 94.3% ViT 1.007 95.53 £ 0.51
' 2 94.8% Swin 1.019 97.07 £ 0.50
1 94.7%
Deetal. [11] 5 95 4%
1 96.7%
Bu et al. [5] 5 97 1% '
7019 97 07% Cross-domain: ImageNet -> Blood-MNIST
Prom-PATE 1.505 97.13%
1.943 97.16% Blood-MNIST Prom-PATE Transfer-PATE Arif et al. [2]
€ 1.973 1.983 1.971
Accuracy(%) 69.93 61.33 63.45

SOTA result



Why Model Reprogramming Works?

https://arxiv.org/abs/2106.09296 (ICML 2021)



https://arxiv.org/abs/2106.09296

Why and When Model Reprogramming Works?
(No, it’s not about knowledge transfer)

d(Informal) Theorem for model reprogramming:
Target risk < Source risk + Representation Alighment Loss

Before V25 reprogramming Fine-tuned Transfer Learning After V25 reprogramming
¥
Adulterated Strawberry 7, 7, .
g” = Strawberry iy
‘a--:é--
s
< —8— (a) Val. Acc.
ead & 00 TR TR e
[ 18 J:: £l EL :':: 6:: n'll: «l:: 1:: E\I'.\C sl
Epochs .
== (b] Val. Loss ¢
w 1
i
(=]
- i

= 1% i ke 42 &8 T8 a3 e Bl

Ep::c he Before Adv. reprogramming Transfer learning (finetuned) After Adv. reprogramming
10

miem () Sliced Wasserstein Distance (SWD) 5

LB,
g‘; oL,
‘5.-.":?\’::‘?-’?: X

B e
& o

Distance between source and reprogrammed
target data representations




Theorem 1: Let 0™ denote the learned additive input trans-
formation for reprogramming (Assumption 4). The popu-
lation risk for the target task via reprogramming a K -way
source neural network classifier fs(-) = n(zs(-)), denoted
by Ep [{7(x: + 6%, y.)], is upper bounded by

Ep,llr(x: +07,u:)] < €s

source risk

+2VK - Wi (ulzs (20 + 0%)), (25 (2:))) 2imDr, 2.nDs

representation alignment loss via reprogramming
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Model Reprogramming:
A new paradigm of resource-limited cross-domain parameter-efficient finetuning with large pretrained models

-Improve data efficiency
-Reuse pretrained models from alternative domains

-Address compute limitations (training epochs, compute resource, etc)

Empirical success in:
- general imaging - medical imaging, human voice — time series, and NLP = molecular learning

- Privacy-constrained fine-tuning; compatible with existing DP training methods (DP-SGD, PATE)

Theoretical justification:
- Target task can be solved as effectively as the source task if their representations are perfectly aligned

Reprogramming is a strong baseline for parameter-efficient finetuning, among
Adapters, LoRA, Prompting, etc
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Opensource codes
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